

SOLAR PV SUITABILITY ANALYSIS FOR UNUSED LAND AREAS AND AGRIVOLTAICS (AgriPV) IN TAMIL NADU

November 2025

GEMENT ACKNOWLED

This publication forms part of the Sustainable Energy Transformation, Tamil Nadu (ARE-TN) series of documents and activities. ARE-TN aims to facilitate higher clean energy deployment in the state by working with all stakeholders to find sustainable and equitable solutions. ARE-TN is a collaborative initiative by Auroville Consulting (AVC), The author acknowledges the use of LifeLands (LiLa) an innovative digital tool that uses satellite imagery, Al & GIS Mapping and creates land-cover maps at high spatial resolution for any area of interest, detects degraded/unused lands and evaluates these lands in regard to climate mitigation and adaptation interventions such as sustainable water management, forestation and solar energy generation.

Authors

Abhijith Vadakkedath, Auroville Consulting Dr Sukanya Randhawa, Auroville Consulting

Reviewers:

Martin Scherfler, Auroville Consulting

Designer

Vimal Bhojraj, Auroville Consulting

Suggested Citation: Auroville Consulting. 2025. Solar PV Suitability Analysis for Unused Land Areas and Agrivoltaics (AgriPV) in Tamil Nadu.

Available at:

https://www.aurovilleconsulting.com/unused-land-solar-analysis-tamil-nadu/

ABOUT LILA

LifeLands (LiLa) is an innovative digital tool that uses satellite imagery, AI & GIS Mapping and (i) creates land-cover maps at high spatial resolution for any area of interest, (ii) detects degraded/unused lands and (iiI) evaluates these lands in regards to climate mitigation and adaptation interventions such as sustainable water management, reforestation and solar energy generation.

Examples on how Lila can be used:

- It can detect degraded lands with high spatial resolution and shortlist lands that are best suited to meet India's reforestation target.
- It can undertake a high level water demand assessment of any area of interest and identify best locations for surface and ground water management.
- It can monitor land-use change over time and help in reporting increase or decrease in forest cover.
- It can identify degraded lands that are best suited for distributed solar energy to meet energy security targets and inform utilities and project developers.
- It can inform land-use and zoning exercise at the local and state level.
- It combines socio-environmental and advanced physical terrain analysis to generate blueprints for sustainable rural development

Solar

KEY FINDINGS

Land Cover Statistics - Tamil Nadu

Tamil Nadu has a total geographical area of 130,325 km². The land cover is distributed as follows:

Land Cover Statistics

Unused	Cropland	Other land
26%	35%	39%

Cropland is the dominant land cover, followed by unused or fallow lands, which together represent 61% of the state's geographical area.

State's solar energy target 20 GW by 2030

Unused	Land	Potential

Technical Potential	Highest Potential
150 gw	10 gw
6,01,701 acres	40,289 acres
31,619 plots	239 plots
752% of target	50% of target

Cropland Potential

Technical Po	tential	Highest Potential
149 g	W	18 gw
1,393,83	3 acres	166,275 acres
76,854	plots	2,069 plots
743% of	target	89% of target

Insights

- Tamil Nadu has very high solar potential: ~150 GW from unused land and ~149 GW from cropland, well above the 20 GW target.
- Top potential areas: 239 unused land plots (40,289 acres), 10 GW; 2,069 cropland plots (166,275 acres), 18 GW (89% of target).
- There is sufficient suitable land to achieve the 20 GW solar target while balancing cropland and unused land use.

TABLE OF CONTENTS

01 INTRODUCTION	8
02 METHODOLOGY	9
03 KEY DATA LAYERS	12
04 LANDCOVER	20
05 SOLAR RESULTS	22
06 CROP LAND	30
07 DISTRICT-LEVEL ANALYSIS	38
08 ECO-IMPACT SUITABILITY ASSESSMENT	44
09 RECOMENDATION	46
10 SUMMARY	47
11 REFERENCES	47
12 ANNEXURE	48

01 INTRODUCTION

This report presents a geospatial land suitability assessment for solar energy development in Tamil Nadu, focusing on two key land categories—unused land and cropland. The objective is to identify land parcels viable for ground mounted solar or Agri Photovoltaic (Agri PV) systems, and to assess their collective potential toward the state's goal of adding 20 GW of solar capacity by 2030 (TEDA, 2023).

Balancing land demand is essential inefficient land use can heighten risks such as drought, flooding, and ecosystem degradation (Verburg et al., 2011; IPCC, 2019). A targeted suitability assessment provides evidence for planning that reconciles energy development with environmental and socio-economic priorities.

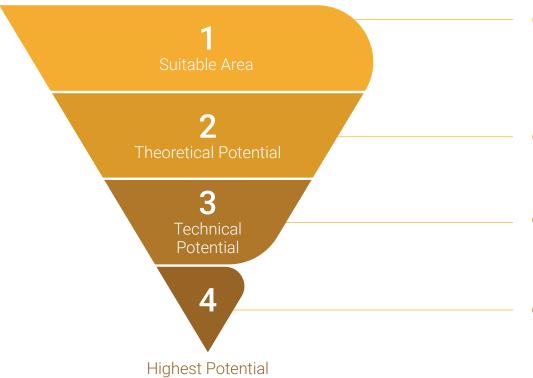
This solar capacity goal aligns with India's revised Nationally Determined Contribution, targeting 50% of total power capacity from non fossil sources by 2030 (MoEFCC, 2022). Meeting 20 GW is projected to require approximately 80,000 acres, or about 0.25% of Tamil Nadu's geographical area (MNRE, 2022). Unused lands present immediate candidates for ground mounted solar, while cropland—when carefully evaluated—can accommodate Agri PV systems that enable simultaneous food production and energy generation (Barron Gafford et al., 2019). This dual land strategy maximizes land utility and minimizes land use conflict.

By producing two spatial suitability outputs—for unused land and cropland—this study equips policymakers, developers, and local authorities with actionable geospatial insights to expedite solar deployment while safeguarding food security and ecological integrity.

02 METHODOLOGY

This study adopts a geospatial, multi-criteria evaluation (MCE) approach to assess the suitability of unused lands and croplands in Tamil Nadu for solar photovoltaic (PV) development. The methodology integrates spatial datasets related to land cover, terrain, infrastructure, ecological sensitivity, and legal exclusions to support informed and sustainable land-use planning.

Land-use and land-cover information is sourced from the Tamil Nadu Blue-Green Network (Auroville Consulting, 2025). This dataset provides year-round land classification at the pixel level and distinguishes consistently unused lands from actively cultivated croplands based on temporal land-use signatures.


Terrain constraints—slope, aspect, and elevation—are evaluated using digital elevation models (DEMs), with sites exceeding 8% slope excluded due to engineering and economic limitations for ground-mounted solar systems (Kabir et al., 2018).

All spatial datasets are integrated into Lila, a proprietary geospatial platform, which allows for dynamic land evaluation using a customizable criteria matrix. This system supports user-defined filters based on regional goals, stakeholder needs, and infrastructure feasibility.

For cropland areas, the platform assesses potential for Agrivoltaics (Agri-PV)—the co-location of solar infrastructure with active farming. This dual-use strategy improves land efficiency and supports agricultural continuity alongside renewable energy deployment (Dupraz et al., 2011).

EVALUATION STEPS

The land suitability assessment is undertaken in a 4-step filtration process to identify unused lands that consecutively meet theoretical, technical and highest potential criteria (refer to tables below).

Cropland:

Land used for annual cropland grown and harvested within 12 months.

Unused lands:

All lands that have not been cultivated for a period of one year.

Theoretical Potential:

All lands suitable for distributed solar PV generation.

Technical Potential:

All suitable lands meeting a minim set of commercial criteria.

Highest Potential:

Lands with the highest commercial — potential for solar energy development.

ECO-IMPACT SUITABILITY ASSESSMENT

Criteria	Description
Flood risk	The identified unused lands and croplands account for more than 30% of the flood-prone areas.
Soil risk	The identified unused lands and croplands account for approximately 30% of the areas classified as having high and medium soil erosion risk
	The identified unused lands and croplands intersect with the migratory routes of bird species classified as endangered and critically endangered, with a minimum of seven such species recorded, as per the IUCN Red List and Birdlife International

THEORETICAL POTENTIAL

Criteria	
Slope	< 8%
Distance to water body	> 100 m
Distance to railway	>200 m
Distance from highways	>500 m
Distance to Airport	>500 m

TECLU	LICAL	DOT	CENT	TAI
TECHI	NICAL	PUI	ENI	IAL

Criteria	Unused land	Crop land
Min. land size	5 acres	3 acres
Global Horizontal Irradiance (GHI)	4.5 W/m2	4.5 W/m2
Distance to evacuation infra	<5 km	<5 km
Distance to road access	<2 km	<2 km
Distance to tiger reserves, wildlife sanc- tuaries, Ramsar sites, bird sanctuaries, mangroves, and national parks	<1 km	
Distance to biosphere	<3 km	<1 km

Note: Unused lands sited within potential tree-cover corridors, and within the administrative boundaries of villages situated within reserve forest were filtered out.

HIGHEST POTENTIAL

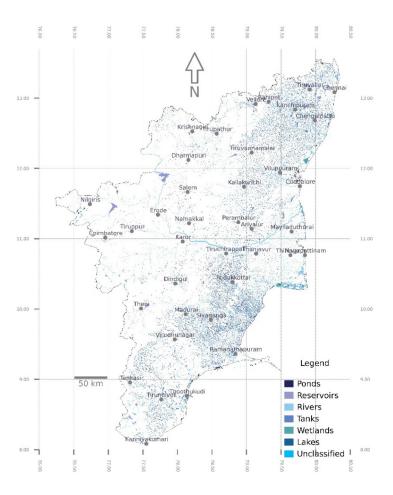
Criteria	High	Medium	Low
Plot Size - Unused Land (acres)	60 ≤	20≤ to 60	5< to 20
Plot Size - Crop Land (acres)	20 ≤	5≤ to 20	3< to 5
Distance to substation (km)	≤2	2 to ≤5	5<
Distance from road (km)	≤1	1 to ≤2	2<

LAND DISTRIBUTION		
Category	Unused land	Crop land
Low	>5 to 20 acres	>3 to 5 acres
Medium	>20 to 60 acres	>5 to 20 acres
High	>60 acres	> 20 acres

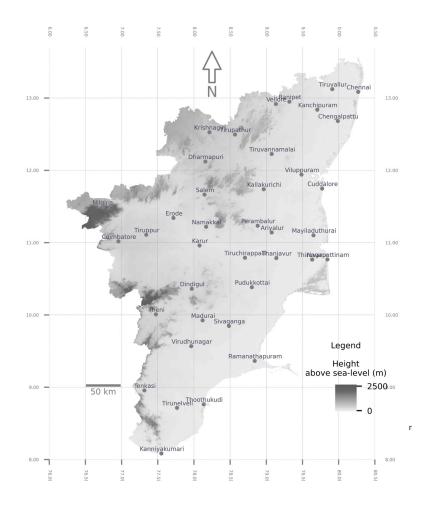
03 KEY DATA LAYERS

KEY TERMS: The following table provides further details on the key terms utilized for this land suitability assessment.

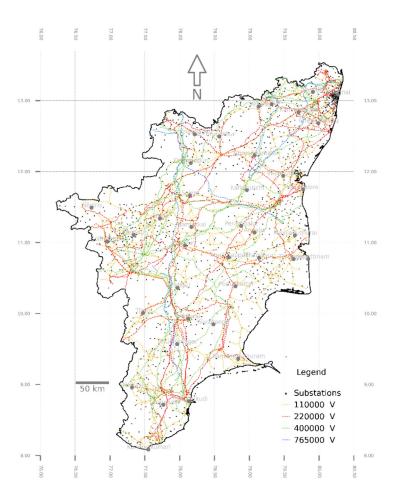
Term	Description
Theoretical potential	Identified unused lands that met a defined set of criteria indicating basic potential for solar development; the criteria used are detailed above. Similarly, croplands suitable for Agri-PV were identified based on factors such as land use classification, cropping intensity, and compatibility with solar infrastructure.
Technical potential	A set of criteria was used to characterize both unused lands and croplands with relatively good potential for solar development, taking into account social, economic, and environmental factors. The specific criteria applied to each land type are listed above.
Low potential	A sub-category of technical potential criteria. This is a minimum criteria.
Medium potential	A sub-category of technical potential criteria, satisfying a higher number of criteria than 'low'. It relates to the distance to the nearest substation, the size of the unused land, and the distance to the nearest road.
High potential	A sub-category of technical potential criteria, satisfying the highest number of criteria. It relates to the distance to the nearest substation, the size of the unused land, and the distance to the nearest road.
Land use	The Lila algorithm identifies 6 categories of land use: unused/barren, sparse vegetation, cropland, tree cover, water and built-up. Land is recognized under each of these categories by the algorithm based on the pixel properties obtained through satellite imagery.
Roads	Different types of pathways are recognized as roads, including highways, primary, secondary, tertiary and residential roads. The roads included in this analysis consider those sufficient to allow mini-trucks to pass.
Water body	A water body is a natural or artificial accumulation of water, such as a river, lake, pond, or reservoir.
Elevation	The elevation of any land is measured relative to the highest point of the watershed it is in. Ex: lands with elevation > 0.8 are lands that lie above 80% of the region's watershed elevation.
Protected areas	These are areas allocated for reserve forests and other such classified lands.
Evacuation infrastructure	This criteria indicates whether the identified unused land is positioned within a specified distance to the nearest transmission line or substation (in a straight line).
Global Horizontal Irradiance (GHI)	This is the total (direct and diffuse) solar energy intercepted by a unit of horizontal surface. The figure used in the report is a yearly average, measured in kWh/m2/day.
Soil Risk	Lands prone to erosion, contamination, or high agricultural value. Mitigation needed for solar projects.
Flood Risk	Areas with frequent inundation. Avoid or elevate solar infrastructure.
Endangered Species	Habitats of critically endangered/migratory bird species. Requires avian-safe designs and buffer zones.
Eco-Impact Suitability Assessment	The Eco-Impact Suitability Assessment (EIA) helps identify ecologically sensitive areas to avoid during solar development.


'Expanding human requirements and economic activities are placing ever increasing pressures on land resources, creating competition and conflicts and resulting in suboptimal use of resources. By examining all uses of land in an integrated manner, it makes it possible to minimize conflicts, to make the most efficient trade-offs and to link social and economic development with environmental protection and enhancement, thus helping to achieve the objectives of sustainable development.' - United Nations (SDG Goal 15)

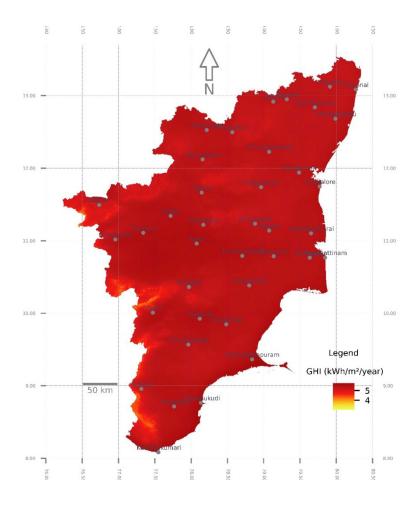
Source: United Nations (n.d) 'Description: Description, land degradation and drought.' Available at: https://sdgs.un.org/topics/description-land-degradation-and-drought (accessed on 28th October 2025).


WATER BODIES

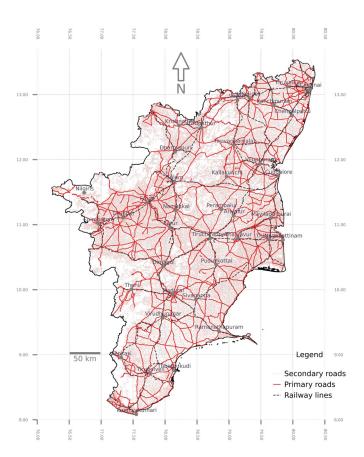
Large water bodies, if available, could be utilized for floating solar plants.


ELEVATION

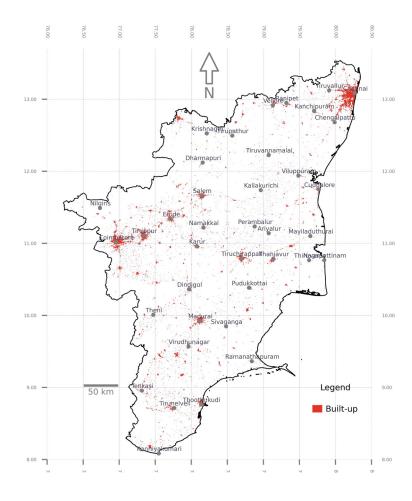
Lands with a slope larger than 8% may increase the capital cost of the project and thereby are excluded from the lands with technical potential. The height of the land above sea-level is indicative of the


POWER EVACUATION

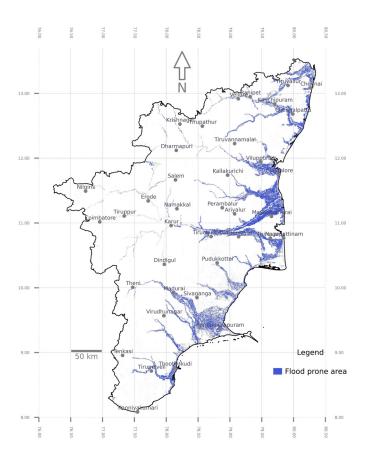
Availability and accessibility of adequate power evacuation infrastructure is one of the key criteria for deciding on the location of a solar plant.


♦ GLOBAL HORIZONTAL IRRADIATON

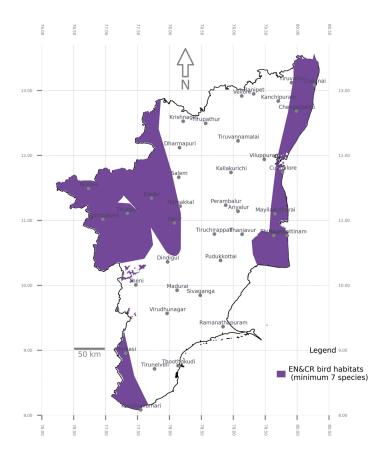
The GHI of a site is a key determining factor for the energy generation potential of a solar plant.


MAJOR ROADS

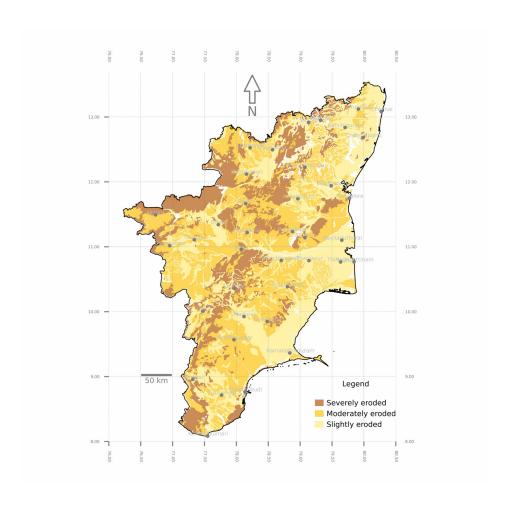
Vicinity to a road that can accommodate load carriers is essential for the deployment of a solar system.


BUILT UP

Built-up area can indicate high load centres and rooftop solar potential.


FLOOD RISK

Availability and accessibility of adequate power evacuation infrastructure is one of the key criteria for deciding on the location of a solar plant.

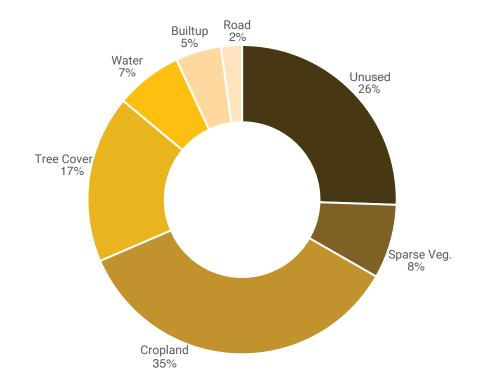

► ENDANGERED SPECIES BIRD

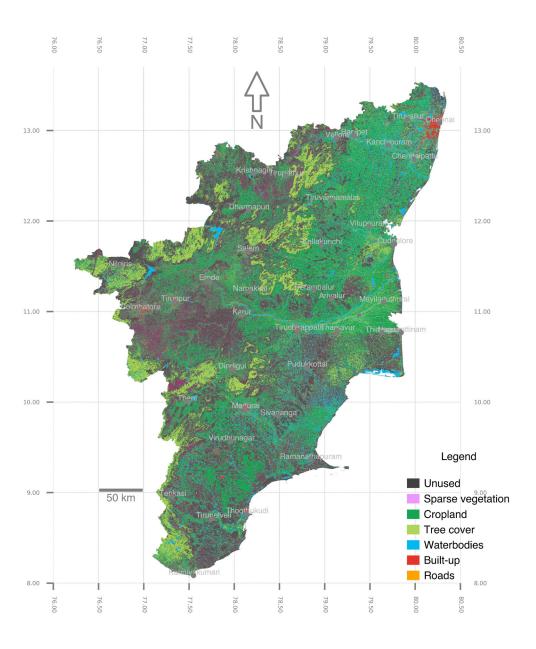
The GHI of a site is a key determining factor for the energy generation potential of a solar plant

Soil Risk

Land parcels were evaluated for erosion vulnerability, and only those outside high-risk zones were retained as suitable for solar infrastructure development.

LANDCOVER DEFINITIONS:

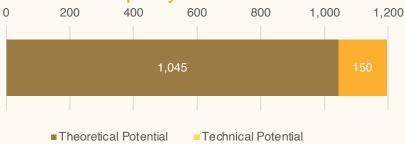

Unused Lands	Lands that have been unused throughout the year (in terms of cultivation/built-up/water/trees) and does not belong to any of the other categories, and could be in barren condition sometimes.
Sparse Vegetation	Includes scrubs, grassland and sparse vegetation. Land covered with annual cropland that is sowed/planted and harvestable at least once within the 12 months after the sowing/ planting date.
Cropland	The annual cropland produces a herbaceous cover and is sometimes combined with some tree or woody vegetation. Note that perennial woody crops will be classified as the appropriate tree cover or shrub land cover type. Greenhouses are considered as built-up.
Tree-cover	This class includes any geographic area dominated by trees with a cover of 10% or more. Other land cover classes (shrubs and/or herbs in the understorey, built-up, permanent water bodies,) can be present below the canopy, even with a density higher than trees. Areas planted with trees for afforestation purposes and plantations (e.g. oil palm, olive trees) are included in this class. This class also includes tree covered areas seasonally or permanently flooded with fresh water.
Water Bodies (Permanent)	This class includes any geographic area covered for most of the year (more than 9 months) by water bodies: lakes, reservoirs, and rivers. They can either be fresh or salt-water bodies.
Built-up	Land covered by buildings. Buildings include both residential and industrial building.
Roads	Land covered by roads


04 LANDCOVER

The districts land cover has been identified as per details below:

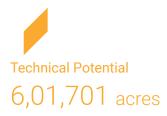
Land Cover	Area (km2)	%of total
Unused	33,274	25.7%
Sparse Veg	10,101	7.8%
Cropland	45,921	35.5%
Tree Cover	22,834	17.7%
Water	9,094	7.0%
Built up	6,240	4.8%
Road	2,861	2.2%
Total	1,30,324	100%

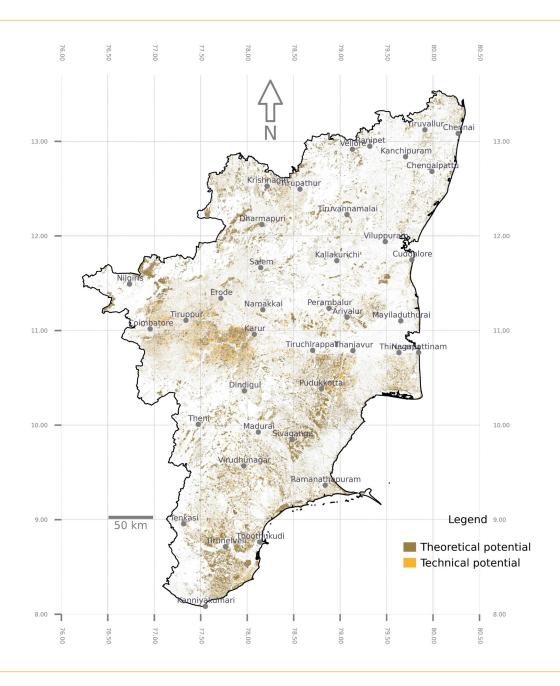
The State's land cover is dominated by agriculture, 35.5% of TGA is under crop land. It has 17.7% of its land under tree cover. Unused or fallow lands account for the second highest recorded land-use in the district, with 25.7% of TGA or 33,274 km2. The high availability of unused lands could present rich opportunities for climate mitigation and adaptation actions, including distributed solar energy deployment.


05 SOLAR RESULTS


Technical suitability

KEY RESULTS

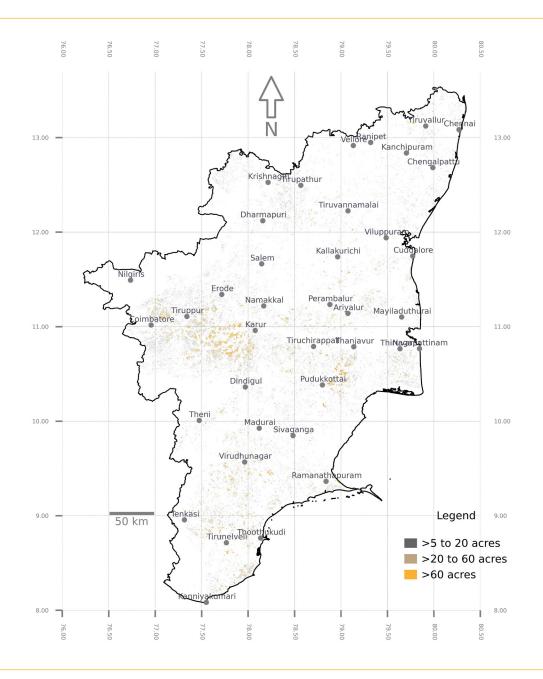

Suitable land	6,01,701	acres
Share on total area	1.9%	%
Share of unused area	10%	%
Share of solar target	752%	%

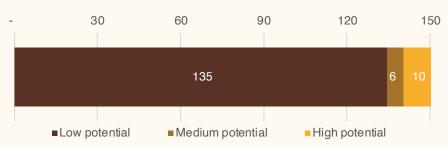

RESULTS			
Category	Plots (nos)	Area (acres)	Capacity (GW)
No Potential	10,60,184	11,05,145	-
Theoretical Potential	34,73,681	41,78,210	1,045
Technical Potential	31,619	6,01,701	150

Distribution by plot size

KEY RESULTS

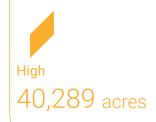
Largest plot	1,467	acres
Plots>60 acres	1,485	nos
Sum of capacities >20 acres	92	GW
Sum of capacities >60 acres	55	GW

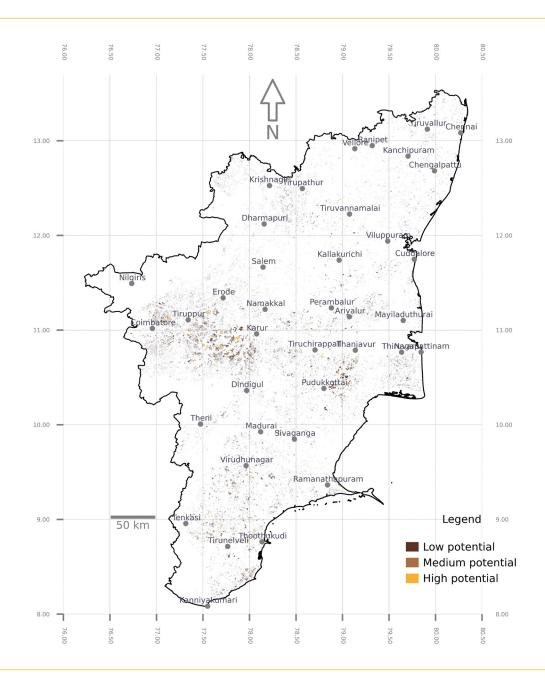

RESULTS			
Plot sizes (acres)	Plots (nos)	Area (acres)	Capacity (GW)
>5 to 20	25,546	2,32,181	58
>20 to 60	4,588	1,49,273	37
>60	1,485	2,20,248	55

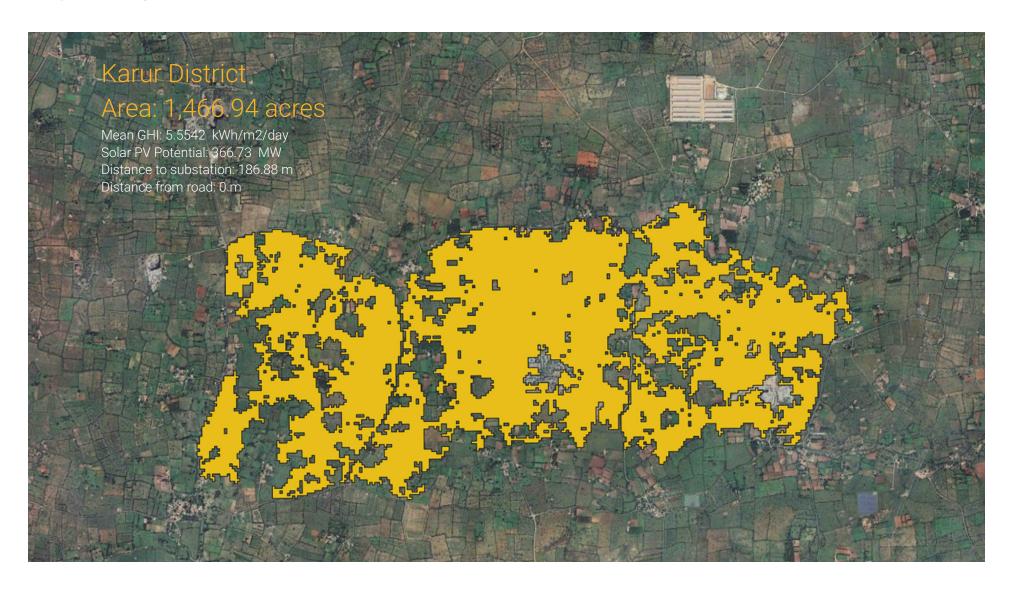


High Potential

KEY RESULTS

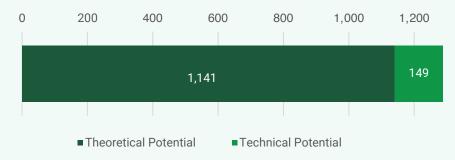

Total area	40,289	acres
Plots	239	nos
Solar	10	GW
Share of target	50%	%


RESULTS			
Potential	>5 to 20 (acres)	>20 to 60 (acres)	>60 (acres)
Low	2,32,181	1,26,417	1,79,892
Medium	-	22,856	67
High	-	-	40,289



High potential sites

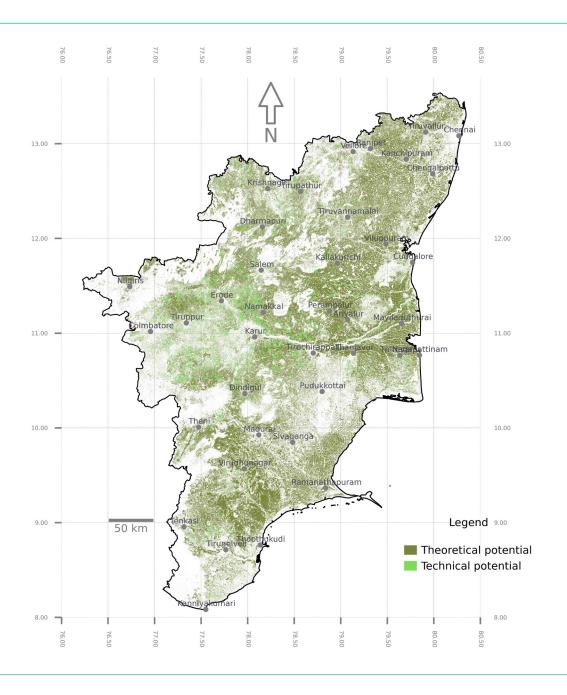
This section highlights a contiguous unused land polygon with a high potential for solar energy deployment. Out of all the highly rated lands, this example has the largest area.


06 CROP LAND


Technical suitability

KEY RESULTS

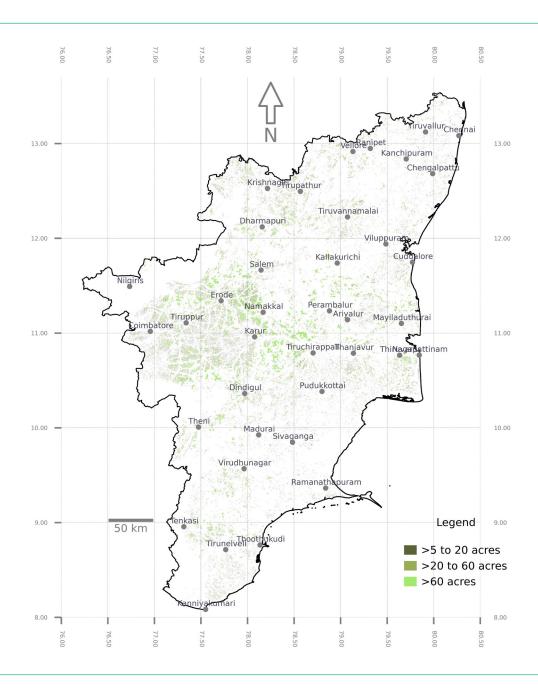
Suitable land	13,93,833	acres
Share on total area	4.3%	%
Share of unused area	24%	%
Share of solar target	743%	%


RESULTS			
Category	Plots (nos)	Area (acres)	Capacity (GW)
No Potential	10,60,184	7,46,081	-
Theoretical Potential	34,28,446	1,07,00,634	1,141
Technical Potential	76,854	13,93,833	149

Distribution by plot size

KEY RESULTS

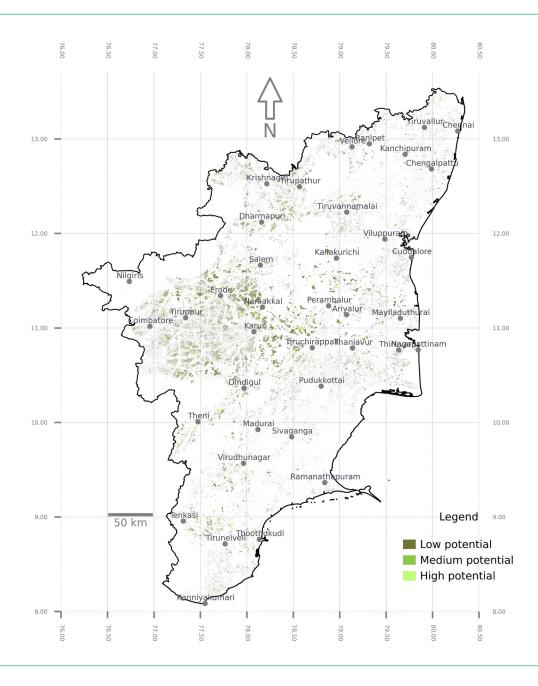
Largest plot	2,194	acres
Plots>20 acres	13,519	nos
Sum of capacities >5 acres	138	GW
Sum of capacities >20 acres	101	GW

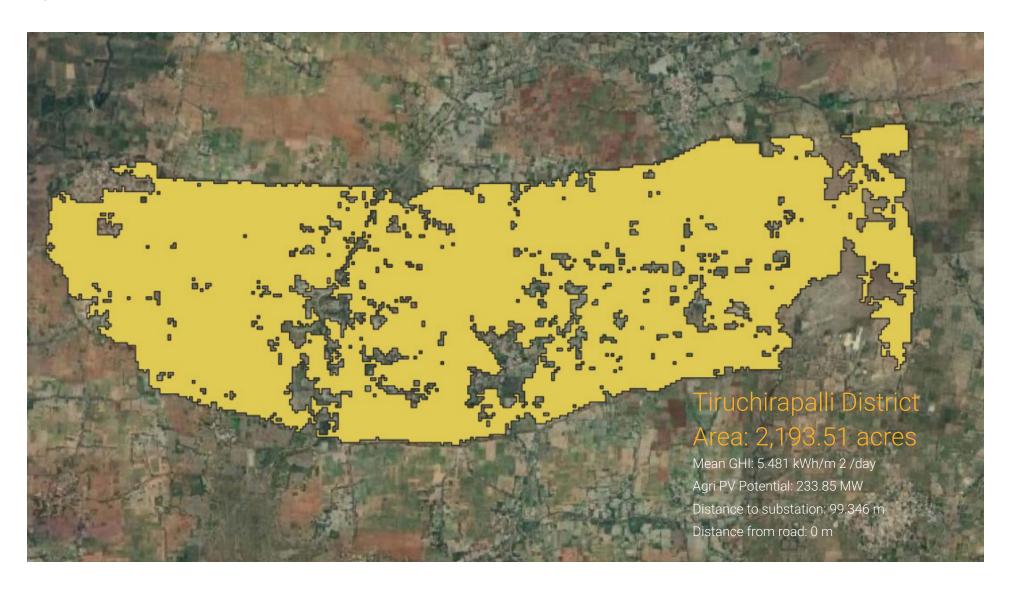

RESULTS				
Plot sizes (acres)	Plots (nos)	Area (acres)	Capacity (GW)	
>3 to 5 acres	27,088	1,05,213	11	
>5 to 20 acres	36,247	3,43,611	37	
>20 acres	13,519	9,45,010	101	

High Potential

KEY RESULTS

Total area	1,66,275	acres
Plots	2,069	nos
Solar	18	GW
Share of target	89%	%


RESULTS			
Potential	>3 to 5 (acres)	>5 to 20 (acres)	>20 (acres)
Low	1,05,213	2,96,732	7,78,630
Medium	-	46,879	104
High	-	-	1,66,275

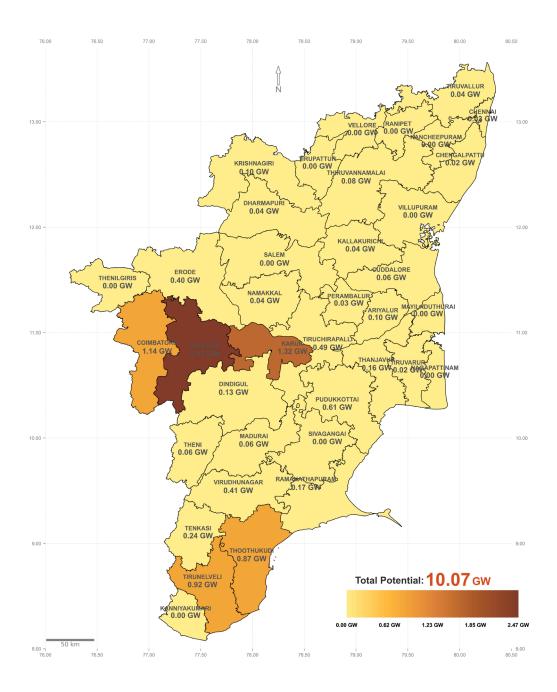


High potential sites

This section highlights a contiguous unused land polygon with a high potential for Agri pv energy deployment. Out of all the highly rated lands, this example has the largest area.

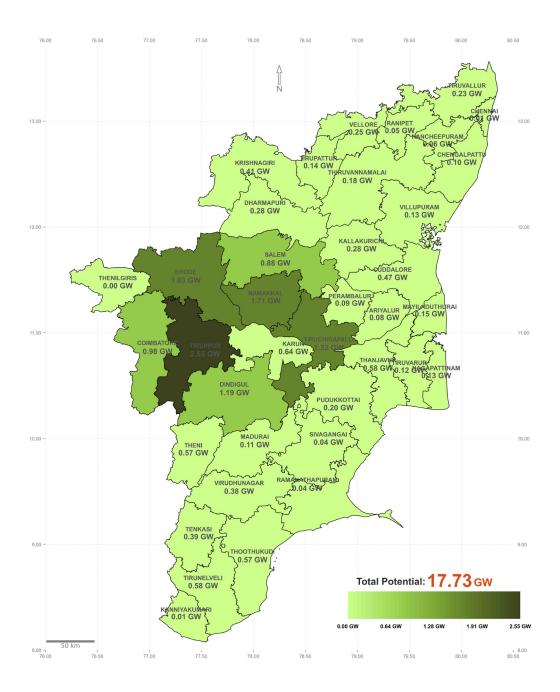
07 DISTRICT-LEVEL ANALYSIS

The analysis conducted at the district level shows the potential for ground-mounted solar energy, given the availability of unused land within the administrative boundaries. The analysis results for each district are presented in detail in Annexure II


Using remote sensing, district-specific insights were derived. These include: the total geographic area (TGA), existing land use patterns, and the extent of unused lands with technical potential for solar energy development. The solar energy potential at the district level is represented in terms of total potential generation capacity (MW). Similarly, the potential for agri-PV was estimated for each district in terms of the total potential generation capacity (MW).

The maps below show the potential of each district achievable with the highest suitable parcels of land. These unused and croplands have areas greater than 60 acres and 20 acres, respectively, and are in proximity to road access (\leq 1 km) and evacuation infrastructure (\leq 2 km).

The results indicate that the districts with the highest potential lie mainly across the central part of the state. Districts with highly suitable unused lands with potentials greater than 1 GW include Tiruppur (2.47 GW), Karur (1.32 GW), and Coimbatore (1.14 GW). Districts such as Tirunelveli, Thoothkudi, and Pudukottai have the potential to contribute more than 0.5 GW each.


With respect to highly suitable lands for agri-PV, districts with potentials greater than 1 GW include Tiruppur (2.55 GW), Erode (1.83 GW), Namakkal (1.71 GW), Tiruchirappali (1.32 GW), and Dindigul (1.18 GW). Additionally, seven districts have highly suitable cropland areas that could contribute to more than 0.5 GW. These areas: Coimbatore, Salem, Karur, Thanjavur, Tirunelveli, Thoothkudi, and Theni.

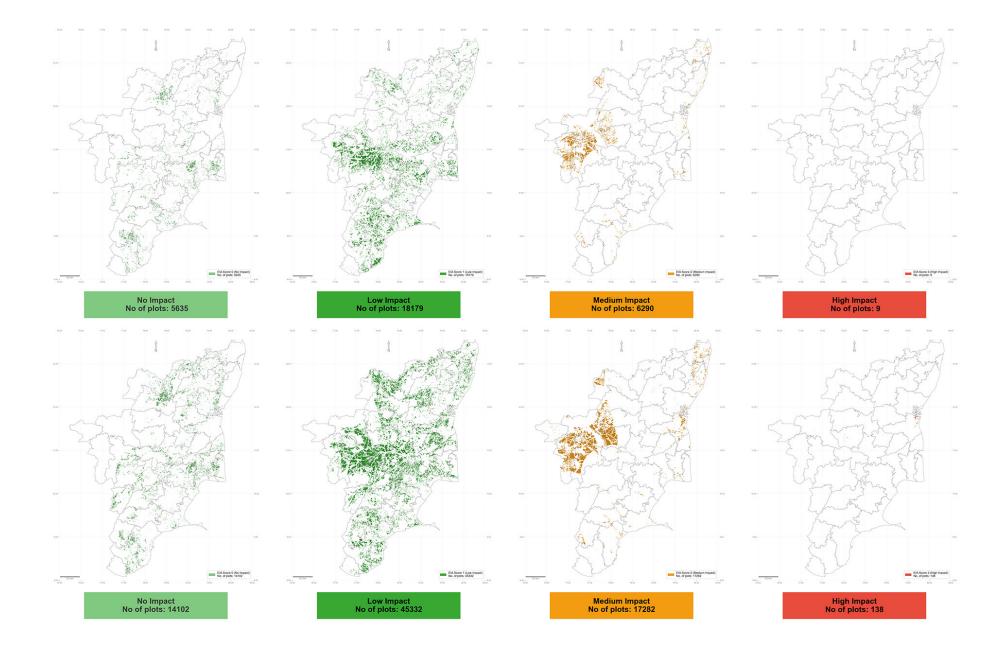
It may be noted that to ensure sustainable deployment, areas within legally protected areas such as reserve forests, Ramsar sites, and sanctuaries were excluded from the analysis. Furthermore, an analysis was conducted to estimate the number of technically and highly suitable plots that are exposed to environmentally sensitive issues such as flood risk, endangered and critically endangered bird species, and soil erosion. Thus, while the plots are suitable, environmental parameters may be taken into account for prioritization of action.

District	Ground-mour High potentia	nted solar on unus I sites	ed lands	
	Plots (no.)	Area (acres)	Solar capacity (MW)	
Ariyalur	5	407	102	
Chengalpattu	1	62	15	
Chennai	1	126	32	
Coimbatore	28	4,560	1,140	
Cuddalore	3	235	59	
Dharmapuri	1	161	40	
Dindigul	7	532	133	
Erode	10	1,615	404	
Kallakurichi	2	178	44 0 0	
Kancheepuram	0	0		
Kanniyakumari	0	0		
Karur	18	5,294	1,323	
Krishnagiri	4	402	101	
Madurai	2	257	64	
Mayiladuthurai	0	0	0	
Nagapattinam	0	0	0	
Namakkal	2	149	37	
Perambalur	1	133	33	
Pudukkottai	11	2,437	609	
Ramanathapuram	3	661	165	
Ranipet	0	0	0	
Salem	0	0	0	
Sivagangai	0	0	0	
Tenkasi	11	972	243	
Thanjavur	5	629	157	

The Nilgiris	0	0	0		
Theni	2	240	60		
Thiruvannamalai	2	317	79		
Thoothukudi	24	3,494	874		
Tiruchirapalli	12	1,973	493		
Tirunelveli	23	3,676	919		
Tirupattur	0	0	0		
Tiruppur	49	9,879	2,470		
Tiruvallur	2	165	41		
Tiruvarur	1	94	24		
Vellore	0	0	0		
Villupuram	0	0	0		
Virudhunagar	9	1,639	410		

District	Ground-mounte High potential	ed solar on unuse sites	ed lands		
	Plots (no.)	Area (acres)	Solar capacity (MW)		
Ariyalur	15	730	78		
Chengalpattu	22	900	96		
Chennai	2	104	11		
Coimbatore	180	9,198	981		
Cuddalore	72	4,455	475		
Dharmapuri	29	2,628	280		
Dindigul	124	11,118	1,185		
Erode	205	17,155	1,829		
Kallakurichi	22	22 2,613			
Kancheepuram	16	587	63		
Kanniyakumari	1	70	7		
Karur	40	6,001	640		
Krishnagiri	73	3,855	411		
Madurai	15	988	105		
Mayiladuthurai	27	1,383	147		
Nagapattinam	11	1,176	125		
Namakkal	149	16,056	1,712		
Perambalur	4	856	91		
Pudukkottai	38	1,847	197		
Ramanathapuram	9	352	38		
Ranipet	7	504	54		
Salem	102	8,283	883		
Sivagangai	8	352	38		
Tenkasi	39	3,660	390		
Thanjavur	74	5,463	582		

The Nilgiris	1	28	3	
Theni	39	5,317	567	
Thiruvannamalai	31	1,713	183	
Thoothukudi	54	5,377	573	
Tiruchirapalli	61	12,377	1,320	
Tirunelveli	92	5,443	580	
Tirupattur	18	1,352	144	
Tiruppur	338	23,931	2,551	
Tiruvallur	38	2,170	231	
Tiruvarur	16	1,137	121	
Vellore	28	2,338	249	
Villupuram	22	1,227	131	
Virudhunagar	47	3,528	376	


08 ECO-IMPACT SUITABILITY ASSESSMENT

The Eco-Impact Suitability Assessment (EIA) helps identify ecologically sensitive areas to take caution in during solar development. It is applied to both ground-mounted solar (unused land) and agri-PV (cropland) zones, classified into technical and high-potential categories. Each land parcel is scored using a binary system (0 or 1) based on the presence of key environmental constraints. The more constraints the parcel of land is exposed to, the higher its rating. The total EIA score ranges from 0 to 3, indicating increasing environmental sensitivity. This scoring allows us to quantify how many parcels in each suitability category—across both ground-mounted and Agri-PV—are environmentally constrained.

The table below provides the number of plots or parcels of land with technical and high potential meeting the levels of EIA scores.

EIA Score	Unuse	d land	Croplands			
	Technical poten- tial (plots)	High potential (plots)	Technical poten- tial (plots)	High potential (plots)		
0	5,635	24	14,102	307		
1	18,179	163	45,332	1,059		
2	6,290	39	17,282	693		
3	9	0	138	10		

Considering both technically and highly suitable unused lands and croplands, the majority of the plots are exposed to a maximum of 1 environmental parameter. Relatively few plots are exposed to more than 1 parameter. A positive result is that no highly suitable unused lands for solar deployment having an EIA rating of 3. Overall, this broad analysis indicates that most of the suitable lands for solar and agri-PV are not located in environmentally sensitive locations.

09 RECOMMENDATIONS

1. Strategically Utilise Verified Unused Lands

Technically viable unused lands can be leveraged for ground-mounted solar projects, particularly through solar-ready zones or cluster-based solar parks with shared infrastructure. Publishing verified land inventories can improve transparency and investment confidence. Land development should be aligned with local needs, environmental safeguards, and long-term land stewardship principles.

2. Scale Up Sustainable Agri-Photovoltaics (Agri-PV)

Croplands identified as suitable for solar may support Agri-PV systems, enabling dual land use for farming and clean energy. A dedicated Agri-PV policy—including technical standards, economic incentives, and farmer support mechanisms—can unlock rural energy potential while safeguarding food systems and soil health.

3. Reform Grid Interconnection to Support Distributed Generation

To enable equitable and cost-effective solar deployment, Tamil Nadu should revise current policies to allow grid interconnection at existing low and medium-voltage feeders. Facilitating virtual net metering, simplified approvals, and localised energy sharing models will improve energy access and enhance grid resilience.

4. Conserve Ecologically Valuable Land

Certain areas with technical solar potential also serve as high-priority sites for forestation and ecosystem restoration. These should be reserved for environmental regeneration to support the State's green cover targets and biodiversity goals. A dual-screening approach, integrating ecological and energy criteria, is essential for land-use sustainability.

5. Establish Solar-Compatible Zoning and Land-Use Guidelines

Large-scale solar development must respect existing land-use dynamics and community rights. Tamil Nadu should formulate solar-specific zoning guidelines that define development corridors, protection buffers, and exclusion zones. These should be integrated into broader spatial and ecological planning frameworks

6. Promote Integrated, Climate-Resilient Land Use

Solar development can be co-located with initiatives such as rainwater harvesting, afforestation, and climate adaptation to maximise land efficiency and impact. The State should pilot and scale multi-functional land-use models, promoting convergence across energy, water, and environment sectors for long-term sustainability.

10 SUMMARY

11 REFERENCES

The results reveal that Tamil Nadu has a significant surplus of land suitable for solar energy development, with technical potential plots far exceeding the state's 20 GW solar target for 2030. Unused lands alone could support up to 150 GW of ground-mounted solar installations, and suitable croplands offer an additional 149 GW through Agri-PV systems, indicating considerable headroom for clean energy expansion. Combined, highly suitable unused lands and croplands have a potential of 28 GW.

The spatial distribution highlights that high-potential plots are concentrated in districts such as Tiruppur, Karur, and Coimbatore, which allows for strategic, district-specific planning and investment. Environmental and legal exclusions, such as protected zones, have been rigorously applied; most suitable parcels are not overly exposed to critical ecological risks like flooding, soil erosion, or endangered bird habitats. This underscores the feasibility of rapid scaling while maintaining high environmental and social standards.

Further, the dual-use approach—using croplands for Agri-PV—aligns energy deployment with agricultural productivity, maximizing land utility without undermining food security. The eco-impact suitability assessment demonstrates that most high-potential lands have minimal environmental sensitivity, bolstering the case for immediate action. Policy recommendations drawn from the analysis include leveraging verified unused clusters for solar parks, institutionalizing Agri-PV policy frameworks, enhancing grid interconnection at the local level, and integrating ecosystem conservation into siting protocols. These insights provide a robust evidence base for policymakers to harmonize renewable energy growth with broader development and conservation objectives in Tamil Nadu.

- Auroville Consulting. 2025. Tamil Nadu Blue-Green Network Database. Available at: https://www.aurovilleconsulting.com (accessed on 16 July 2025).
- Barron Gafford, G.A., Pavao Zuckerman, M.A., Minor, R.L. et al. 2019. Agrivoltaics provide mutual benefits across the foodenergy-water nexus in drylands. Nature Sustainability, 2(9), pp. 848–855. Available at: https://doi.org/10.1038/s41893-019-0364-5 (accessed on 16 July 2025).
- Central Electricity Authority (CEA). 2013. Technical Standards for Connectivity of the Distributed Generation Resources. Available at: http://www.cea.nic.in/reports/regulation/distributed_gen.pdf (accessed on 02 July 2025).
- Dayakar, P., Madras School of Economics. 2017. Cost of Land Degradations, Working Paper, pp. 20. Available at: http://www.mse.ac.in/wp-content/uploads/2017/06/Working-Paper-163.pdf (accessed on 02 July 2025).
- Department of Land Resources. 2019. Wasteland Atlas Tamil Nadu. Available at: https://doir.gov.in/en/documents/wastelandatlas-of-india (accessed on 02 July 2025).
- Dupraz, C., Marrou, H., Talbot, G., Ďufour, L., Nogier, A., & Ferard, Y. 2011. Combining solar panels and crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36(10), 2725–2732. Available at: https://doi.org/10.1016/j.renene.2011.03.005 (accessed on 16 July 2025).
- Government of Tamil Nadu. 2019. Tamil Nadu Solar Energy Policy 2019. Available at: https://tidco.com/wp-content/ uploads/2020/04/tamil-nadu-solar-policy-2019-min.pdf (accessed on 16 July 2025).
- Indian Council of Agricultural Research (ICAR). 2010. Degraded and Wastelands of India: Status and Spatial Distribution, p. 133
 Available at: https://icar.org.in/files/Degraded-and-Wastelands.pdf (accessed on 02 July 2025).
- International Renewable Energy Agency (IRENA). 2019. Renewable Energy and Jobs Annual Review 2019. Available at: https://www.irena.org/publications/2019/Jun/Renewable-Energy-and-Jobs-Annual-Review-2019 (accessed on 16 July 2025).
- IPCC. 2019. Special Report on Climate Change and Land. Intergovernmental Panel on Climate Change. Available at: https://www.ipcc.ch/srccl/ (accessed on 16 July 2025).
- IUCN Red List. 2024; BirdLife International. 2024. Migratory bird routes and species status data. Available at: https://www.iucnredlist.org.and.https://www.birdlife.org (accessed on 16 July 2025).
- Kabir, M. J., Sultana, M., Saidur, R., & Rahim, N. A. 2018. Evaluation of site suitability for solar PV using geospatial tools. Renewable Energy, 122, 52–63. Available at: https://doi.org/10.1016/j.renene.2018.01.012 (accessed on 16 July 2025).
- Ministry of Environment, Forest and Climate Change (MoEFCC). 2022. India's Updated First Nationally Determined Contribution under the Paris Agreement. Available at: https://unfccc.int/documents/624440 (accessed on 16 July 2025).
- Ministry of New and Renewable Energy (MNRE). 2022. Guidelines for Development of Decentralized Solar Power Projects. Available at: https://mnre.gov.in (accessed on 16 July 2025).
- Ministry of New and Renewable Energy (MNRE). 2023. Guidelines for Development of Solar Parks and Ultra Mega Solar Power Projects. Available at: https://mnre.gov.in/img/documents/uploads/file_f-1683792723915.pdf (accessed on 16 July 2025).
- Tamil Nadu Department of Rural Development and Panchayat Raj (TNDRDPR). 2020. District Diagnostic Study Nagapattinam. Available at: https://tnrtp.org/wp-content/uploads/2020/07/NAGAPATTINAM-FINAL.pdf (accessed on 02 July 2025).
- Tamil Nadu Energy Development Agency (TEDA). 2023. Tamil Nadu Renewable Energy Roadmap 2030. Available at: https://tidco.com/wp-content/uploads/2020/04/tamil-nadu-solar-policy-2019-min.pdf (accessed on 16 July 2025).
- Tamil Nadu Energy Development Agency (TEDA). 2024. Tamil Nadu Energy Development Agency Agency Profile. Available at https://en.wikipedia.org/wiki/Tamil_Nadu_Energy_Development_Agency (accessed on 16 July 2025).
- Tamil Nadu Environmental Information Center (TNENVIS). 2020. Nagapattinam District. Available at: http://tnenvis.nic.in/files/ NAGAPATTINAM%20%20.pdf (accessed on 02 July 2025).
- Verburg, P.H., Neumann, K., and Nol, L. 2011. Challenges in using land use and land cover data for global change studies. Global Change Biology, 17(2), pp. 974–989. Available at: https://doi.org/10.1111/j.1365-2486.2010.02307.x (accessed on 16 July 2025.

12 ANNEXURE

The table below describes the estimation for the area of AgriPV installable for every acre of cropland:

Crop types in Tamil Nadu		Area		Density	AgriPV potential assuming theoretical cropland			
	ha	acre	%	(kWp/ha)	Available land (ha)	Potential (TWp)		
Cereals	30,54,010.00	75,46,611.41	49.93%	250.00	60,59,281.30	1.51		
Pulses	7,17,021.00	17,71,794.74	11.72%	300.00	14,22,599.12	0.43		
Sugar	1,51,687.00	3,74,826.16	2.48%	150.00	3,00,953.24	0.05		
Spices and condiments	1,26,377.00	3,12,283.89	2.07%	650.00	2,50,737.16	0.16		
Fruits	4,13,820.00	10,22,569.91	6.77%	300.00	8,21,035.88	0.25		
Vegetables	3,12,201.00	7,71,464.28	5.10% 650.00		6,19,419.61	0.40		
Other food crops	8,695.00	21,485.78	0.14%	150.00	17,251.24	0.00		
Non food crops	13,32,805.00	32,93,427.80	21.79% 150.00		26,44,339.87	0.40		
Total	61,16,616.00	1,51,14,463.97	100.00%	-	1,21,35,617.41	3.20		

Parameter	Value	Unit
Total theoretical potential land for AgriPV	1,21,35,617.41	ha
Average AgriPV installation density	263.51	kWp/ha
Average AgriPV installation density	106.64	kWp/acre
Average land requirement per MW of AgriPV	9.38	acre/MW

The table below provides the district-wise technical and high-potential areas for solar and Agri-PV, with unused and croplands, respectively.

Unused land (Ground-mounted solar)

Cropland (Agri PV)

	Technical			High potential				Technical			High potential		
District	Plots (no.)	Area (acres)	Equivalent capacity (MW)										
Ariyalur	628	11,013	2,753	5	407	102	1,234	19,866	2,118	15	730	78	
Chengalpattu	371	5,217	1,304	1	62	15	1,117	13,314	1,419	22	900	96	
Chennai	34	492	123	1	126	32	82	587	63	2	104	11	
Coimbatore	2,885	49,118	12,280	28	4,560	1,140	5,750	69,992	7,462	180	9,198	981	
Cuddalore	493	9,738	2,435	3	235	59	2,285	48,129	5,131	72	4,455	475	
Dharmapuri	654	8,477	2,119	1	161	40	2,127	43,372	4,624	29	2,628	280	
Dindigul	1,708	30,230	7,557	7	532	133	3,631	88,675	9,454	124	11,118	1,185	
Erode	1,492	22,081	5,520	10	1,615	404	4,640	103,712	11,057	205	17,155	1,829	
Kallakurichi	201	3,682	920	2	178	44	601	16,752	1,786	22	2,613	279	
Kancheepuram	188	2,372	593	0	0	0	761	8,522	909	16	587	63	
Kanniyakumari	20	167	42	0	0	0	76	724	77	1	70	7	
Karur	1,671	53,037	13,259	18	5,294	1,323	3,635	81,653	8,705	40	6,001	640	
Krishnagiri	1,424	18,461	4,615	4	402	101	4,115	59,575	6,351	73	3,855	411	
Madurai	641	11,564	2,891	2	257	64	1,095	16,099	1,716	15	988	105	
Mayiladuthurai	149	1,719	430	0	0	0	431	9,132	974	27	1,383	147	
Nagapattinam	614	8,594	2,149	0	0	0	566	7,542	804	11	1,176	125	

Namakkal	674	9,113	2,278	2	149	37	4,164	117,547	12,532	149	16,056	1,712
Perambalur	281	4,870	1,217	1	133	33	421	14,913	1,590	4	856	91
Pudukkottai	1,969	45,050	11,263	11	2,437	609	3,329	34,002	3,625	38	1,847	197
Ramanathapuram	982	15,658	3,914	3	661	165	925	10,050	1,071	9	352	38
Ranipet	101	1,501	375	0	0	0	460	7,793	831	7	504	54
Salem	585	6,410	1,603	0	0	0	2,691	60,072	6,404	102	8,283	883
Sivagangai	632	9,075	2,269	0	0	0	1,221	12,266	1,308	8	352	38
Tenkasi	764	14,655	3,664	11	972	243	1,188	22,200	2,367	39	3,660	390
Thanjavur	598	8,875	2,219	5	629	157	2,253	35,569	3,792	74	5,463	582
The Nilgiris	4	49	12	0	0	0	20	132	14	1	28	3
Theni	306	4,545	1,136	2	240	60	1,275	23,240	2,478	39	5,317	567
Thiruvannamalai	551	9,189	2,297	2	317	79	2,484	38,259	4,079	31	1,713	183
Thoothukudi	1,803	40,813	10,203	24	3,494	874	1,898	28,786	3,069	54	5,377	573
Tiruchirapalli	1,116	22,961	5,740	12	1,973	493	2,560	95,904	10,224	61	12,377	1,320
Tirunelveli	1,026	21,408	5,352	23	3,676	919	2,298	31,050	3,310	92	5,443	580
Tirupattur	292	3,308	827	0	0	0	1,130	17,875	1,906	18	1,352	144
Tiruppur	3,698	92,040	23,010	49	9,879	2,470	9,466	155,705	16,600	338	23,931	2,551
Tiruvallur	476	7,591	1,898	2	165	41	1,467	17,399	1,855	38	2,170	231
Tiruvarur	649	10,393	2,598	1	94	24	1,153	18,540	1,977	16	1,137	121
Vellore	119	1,464	366	0	0	0	1,268	17,994	1,918	28	2,338	249
Villupuram	462	5,843	1,461	0	0	0	1,192	14,995	1,599	22	1,227	131
Virudhunagar	1,358	30,928	7,732	9	1,639	410	1,845	31,896	3,400	47	3,528	376

